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Constitutive Modeling and Thermoviscoplasticity

Development and solution of coupled thermomechanical equations at elevated
temperature and/or high strain rates are discussed. Three main considerations
are presented: development of the coupled thermomechanical equations by means
of the rational theory of thermodynamics, development of a thermoviscoplastic
constitutive equation which is congruous with the developed coupled equations,
and the applicability of the developed equations to the treatment by the
finite element method.
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Introduction

It is well established that finite deformations of a solid body particularly
at elevated temperature and/or high strain rates represent coupled
thermomechanical processes, which require the simultaneous solution of the
coupled balance of momenta and energy equations. A proper devélopment and
solution of such thermomechanical problems requires: 1) adoption of the
rational theory of thermodynamics, 2) a comprehensive viscoplastic
constitutive equation which accounts for the strain rate, temperature and
hardening effects, and 3) compatibility with the available numerical tools,
particularly the finite element method. These requirements taken together have
not been used extensively by researchers in dealing with thé coupled
thermomechanical problems. However, because of the need for stringent accuracy
when solving practical thermomechanical problems such as in rockets and in
nuclear reactors, the importance of these requirements is being recognized.
Inoue and Nagaki [1] and Allen [2] developed coupled thermomechanical
equations with limited applications to one dimensional problems. Ghoneim [3]
presented a coupled equations, without hardening effects, and applied them to
a two dimensional axisymmetric problem of compression of a constrained-ends
cylinder. Lehmann [4] presented a comprehensive analysis of the development of
the coupled equations with application to the necking problem in a specimen
subjected to the tensile test. However, a more realistic constitutive law
which includes strain rate and temperature effects is needed.

In this paper development and solution of the coupled thermomechanical
problems is considered, based on the three requirements listed earlier: The
coupled thermomechanical equations are developed on the basis of the rational
theory of thermodynamics; a viscoplastic constitute equation which accounts
for the temperature, strain rate, and hardening effect is proposed; and the
computability of the developed coupled thermomechanical equation with the
finite element method is discussed.
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Development of the Coupled Thermomechanical Equations

We assume that the state of a material point is oompletely determined by the

knowledge of the elastic strain tensor ge, the inelastic strain tensor gI,
the absolute temperature T, the temperature gradient VT, and a set of
internal state variables gj. i,=1,..., p. Consequently, the following

constitutive relations may be postulated:

s=s(e gt o, o) (1.1)
vev (L EL T g ) (1.2)
s=s (5, B, 1,9, 4 ) (1.3)
a=a (£ EL T g ) (1.4)
El-=g (et g, oom, o) (1.5)
and

g' =g (F, En el (1.6)

where S 1is the second Pijola-Kirchhoff stress tensor, ¥ stands for the

Helmholtz free energy, s means the specific entropy, and q is the heat flux

per unit area.

Upon invoking the axiom of admissibility (i.e., the compatibility of the
assumed constitutive relations with the fundamental equations of mechanics)
and when adopting the separabilty of the total Green-Lagrange strain energy
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where Y is the coefficient of the thermal expansion tensor, it follows:
) v=y (L EL T g

S=a—we—:l'§ip‘=s(£e,£’.r,g1)
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o %
At this stage, we may postulate
Pb=obo +3E D i Evpoc, T-mT+g:g ...(4)

where D4 is the fourth order elasticity tensor, p is the density at the
reference configuration, and cvstands for the specific heat at constant

deformation. The tensor 8 1is the material property tensor. Substituting (4)

and the Fourier's law, q = - kVT into equations (2) and (3), we obtain
2 . - ; . p€ Lel .
-kVT+pch--p(l.D".E)T+i.£-pé:g ...(5)
and
. 2
'é:£1+p§:g+k(vn >0
- Z

Equation (5) is the coupled heat equation which together with the balance of

linear momentum equation constitutes the set of coupled thermomechanical

equations. It might be worth pointing out that the right-hand side of the
equation (5) represents the mechanical energy generation; the first term
stands for the reversible part, the second for the dissipated irreversible

part, and the third for the stored irreversible part due to microstructural
effects.
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The Viscoplactic Constitutive Equation

Solution of the coupled thermomechanical equations requires closed-form
expressions for (1.5) and (1.6). These may be taken from any of the state
variable theories [5-8]. Inhere, a constitutive equation which may be regarded
as a modification of th Bodner-Partom's power law is proposed. The proposed
equations are thought to be simple, lucid, and consequently very practical. As
in the case of the internal state variables theory, the proposed constitutive
equations utilize two state variables: a kinematic hardening state variable
which accounts for the "rest" stress, and an isotropic hardening state
variable which accounts for the "drag" stress. Only the isotropic hardening
state variable will be considered in this paper.

After adopting the flow rule, we can show that

= " T TE ... (6)
where T=  is the effective stress ( 10 =V 7 54; 833 )s 3 is the

deviatoric stress tensor, n is a strain rate sensitivity parameter, and Y is
the isotropic hardening state variable which is equivalent to the dynamic
yield stress [8]. In general, Y is a functional of the history of deformation
or any related quantity such as the viscoplastic work NP. If the convolution
form of Stieltjes integral is adopted for such functional

t
Y= e-T/TONp(t-T)dT
0

where t is the time and To stands for the relaxation time constant, and when
the 3-parameter element model is considered, we get

?+aY=H1 ﬂp+H2VNp ---(7)

where a, H1 , and H2 are material constants.

In order to incorporaté the temperature effects into the evolution equations
(6) and (7), Y is expressed as a function of temperature. Since in the
proposed constitutive equations Y can be viewed as the equivalent dynamic
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yield stress, the function may be constructed from experimental data of the
yield stress versus temperature. A possible form of this function is

Te - T
Y=Y (—)
O(TC"TO ...(8)

where TC is a constant, To is a reference temperature, and Yo is the value of
the yield stress at TO. In addition, from the observation of the variation of
the plastic flow with temperature, we have £I proportional to exp (-Q/RT),
E ~exp (- Q/RT) (9)

where Q@ is the activation energy (assumed constant), and R is the universal
gas constant. From equations (6), (8) and (9) it follows that n must be a
function of T,

Q (T-To) / 1n (Tc-To)
R
ToT Te-T ...(10)

The proposed viscoplastic constitutive equations (equations (6) and (7)
subjected to (8) and (10)) are examined by conducting a series of
one-dimensional uniaxial numerical calculations. Samples of the results are
given in Figures 1-4. Figures 1 and 2 display the tensile stress-strain
results at different strain rates and temperature. Strain rate history effects
are demonstrated by a jump test in Figure 3. Cyclic test results, Figure 4,
depict the «cyclic hardening effects. Qualitatively speaking, results
demonstrate the capability of the proposed viscoplastic constitutive equations
in generating some of the important characteristics of a class of viscoplastic
materials. A quantitative investigation of the constitutive equations is to be
conducted experimentally for some viscoplastic materials in a future work.
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Finite Element Implementation

Compatibility of the developed coupled thermomechanical equations is
demonstrated for the case of quasistatic infinitesimal deformation with no
body force and no heat generation, i.e.,

vog =0 ...(11)

Jo is a scalara constant, P is the density, & stands for the Kronecker

symbol, o and € are the stress and strain tensors, respectively,
expressed in vector form, .21 and Eyp the corresponding deviatoric stress
and viscoplastic strain vectors, respectively, €, is the dilatation, and [D]

is the elastic matrix.

When adopting the Galerkin finite element method, (11) and (12) become,
respectively,

[Kk1JO0+[C11t=R+F ...(13)

[c2] T+ [kl

n

[F )
+
o

...(14)

where U, T, R, and Q are the nodal displacement, the nodal temperature, the

nodal force, and the thermal convection load vectors, respectively, F, is a
vector which accounts for the viscoplastic effects of the balance of *omentum
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equation, and F, is a vector which accounts for the mechanical heat
generation. Also, [K1], [K2], [C1], and [C2] are, respectively, the stiffness,
conductivity, coupling, and consistency matrices. The differential equations
(13) and (14) can be solved by using the general "6" method in conjunction
with the fixed point iteration method for the solution of the ensuing
nonlinear algebraic equations. Results of tensile and compression'loading of a
constrained-ends cylinder for a constant Y can be found in [8].

The extension of this work to incorporate hardening and temperature effects
and solving other practical problems is being undertaken.

104



References

1)

2)

3)

4)

5)

6)

7)

8)

T. Inoue, and S. Nagaki, "A Constitutive Modeling of Thermoviscoelastic-
Plastic Materials," Journal of Thermal Stresses, Vol. 1, pp.53-61, 1978.

D.H. Allen, "A Prediction of Heat Generation in a Thermoviscoelastic
Uniaxial Bar,” International Journal of Solids and Structures, Vol. 21, pp.
325-343, 1985.

H. Ghoneim, and S. Matsuoka, "Thermoviscoplasticity by Finite Element:
Tension and Compression Test," Report No. 311201-0199, AT&T Bell
Laboratories, Murray Hill, N.J. 1985.

Th. Lehmann, and U. B1ix, "On the Influence of the Coupling of Thermal
and Mechanical Processes in the Necking Problem in Uniaxial Tension,”
Journal of Thermal Stresses, Vol. 8, pp. 153-165, 1985,

A.K. Miller, "An Inelastic Constitutive Model for Monotonic, Cyclic, and
Creep Deformation," ASME Journal of Engineering Materials and Technology,
Vol. 98, pp. 97-113, 1976.

E.W. Hart, "Constitutive Equations for the Nonelastic Deformation of
Metals," ASME Journal of Engineering Materials and Technology, Vol. 98,
pp. 193-202, 1976.

S.R. Bodner, 1. Partom, and Y. Partom, "Uniaxial Cyclic Loading of
Elastic-Viscoplastic Materials," ASME Journal of Applied Mechanics, Vol.
46, pp. 805-810, 1979.

H. Ghoneim, S. Matsuoka, and Y. Chen, "Viscoplastic Modeling with Strain

Rate History Dependency," ASME Journal of Applied Mechanics, Vol. 50, pp.
465-468, 1983.

105



SS.10? MPa

§S-.10? MPa

3.00+

é=0.1 Sec™* S
2.40-

¢ =0.01 Sec* -
1.80-

é= 0.00145‘»12"/’
1.20 1
0.60- T = 600°K
o'ool T L) L] L L}

0.00 1.00 2.00 3.00 4.00 5.00
EPS 1072
Fig. 1
2.40+ T=310°K -
T=600°K N
1.92+
T=1900°K -
1.44
0.964
0481 ¢ = 0.01Sec™
O-OOF T T T T 1
0.00 1.00 2.00 3.00 4.00 5.00
EPS .107
Fig. 2

106



SS -10? MPa

SS -10? MPa

3.00 1

2.40
£€=0018ec” - _____—-==

1.80 1

1.20 4 E = 0.001 Sec™*

0.604

T = 600°K
0.004 ’ . . . ,
0.00 1.00 2.00 3.00 4.00 5.00
EPS .10
Fig. 3

5.00 +

3.001

1.004

¢ = *x0.01Sec™
1007 T = 600°K
-3.00 4
'5'00 T 1) T 14 1
-1.00 -0.60 -0.20 0.20 0.60 1.00
EPS .10?
Fig. 4

107



